Aspeed family boards (ast2500-evb, ast2600-evb, ast2700-evb, bletchley-bmc, fuji-bmc, fby35-bmc, fp5280g2-bmc, g220a-bmc, palmetto-bmc, qcom-dc-scm-v1-bmc, qcom-firework-bmc, quanta-q71l-bmc, rainier-bmc, romulus-bmc, sonorapass-bmc, supermicrox11-bmc, tiogapass-bmc, tacoma-bmc, witherspoon-bmc, yosemitev2-bmc)

The QEMU Aspeed machines model BMCs of various OpenPOWER systems and Aspeed evaluation boards. They are based on different releases of the Aspeed SoC : the AST2400 integrating an ARM926EJ-S CPU (400MHz), the AST2500 with an ARM1176JZS CPU (800MHz), the AST2600 with dual cores ARM Cortex-A7 CPUs (1.2GHz) and more recently the AST2700 with quad cores ARM Cortex-A35 64 bits CPUs (1.6GHz)

The SoC comes with RAM, Gigabit ethernet, USB, SD/MMC, USB, SPI, I2C, etc.

AST2400 SoC based machines :

  • palmetto-bmc OpenPOWER Palmetto POWER8 BMC

  • quanta-q71l-bmc OpenBMC Quanta BMC

  • supermicrox11-bmc Supermicro X11 BMC

AST2500 SoC based machines :

  • ast2500-evb Aspeed AST2500 Evaluation board

  • romulus-bmc OpenPOWER Romulus POWER9 BMC

  • witherspoon-bmc OpenPOWER Witherspoon POWER9 BMC

  • sonorapass-bmc OCP SonoraPass BMC

  • fp5280g2-bmc Inspur FP5280G2 BMC

  • g220a-bmc Bytedance G220A BMC

  • yosemitev2-bmc Facebook YosemiteV2 BMC

  • tiogapass-bmc Facebook Tiogapass BMC

AST2600 SoC based machines :

  • ast2600-evb Aspeed AST2600 Evaluation board (Cortex-A7)

  • tacoma-bmc OpenPOWER Witherspoon POWER9 AST2600 BMC

  • rainier-bmc IBM Rainier POWER10 BMC

  • fuji-bmc Facebook Fuji BMC

  • bletchley-bmc Facebook Bletchley BMC

  • fby35-bmc Facebook fby35 BMC

  • qcom-dc-scm-v1-bmc Qualcomm DC-SCM V1 BMC

  • qcom-firework-bmc Qualcomm Firework BMC

AST2700 SoC based machines :

  • ast2700-evb Aspeed AST2700 Evaluation board (Cortex-A35)

Supported devices

  • SMP (for the AST2600 Cortex-A7)

  • Interrupt Controller (VIC)

  • Timer Controller

  • RTC Controller

  • I2C Controller, including the new register interface of the AST2600

  • System Control Unit (SCU)

  • SRAM mapping

  • X-DMA Controller (basic interface)

  • Static Memory Controller (SMC or FMC) - Only SPI Flash support

  • SPI Memory Controller

  • USB 2.0 Controller

  • SD/MMC storage controllers

  • SDRAM controller (dummy interface for basic settings and training)

  • Watchdog Controller

  • GPIO Controller (Master only)

  • UART

  • Ethernet controllers

  • Front LEDs (PCA9552 on I2C bus)

  • LPC Peripheral Controller (a subset of subdevices are supported)

  • Hash/Crypto Engine (HACE) - Hash support only. TODO: HMAC and RSA

  • ADC

  • Secure Boot Controller (AST2600)

  • eMMC Boot Controller (dummy)

  • PECI Controller (minimal)

  • I3C Controller

  • Internal Bridge Controller (SLI dummy)

Missing devices

  • Coprocessor support

  • PWM and Fan Controller

  • Slave GPIO Controller

  • Super I/O Controller

  • PCI-Express 1 Controller

  • Graphic Display Controller

  • MCTP Controller

  • Mailbox Controller

  • Virtual UART

  • eSPI Controller

Boot options

The Aspeed machines can be started using the -kernel and -dtb options to load a Linux kernel or from a firmware. Images can be downloaded from the OpenBMC jenkins :

or directly from the OpenBMC GitHub release repository :

or directly from the ASPEED Forked OpenBMC GitHub release repository :

Booting from a kernel image

To boot a kernel directly from a Linux build tree:

$ qemu-system-arm -M ast2600-evb -nographic \
      -kernel arch/arm/boot/zImage \
      -dtb arch/arm/boot/dts/aspeed-ast2600-evb.dtb \
      -initrd rootfs.cpio

Booting from a flash image

The machine options specific to Aspeed to boot from a flash image are :

  • execute-in-place which emulates the boot from the CE0 flash device by using the FMC controller to load the instructions, and not simply from RAM. This takes a little longer.

  • fmc-model to change the default FMC Flash model. FW needs support for the chip model to boot.

  • spi-model to change the default SPI Flash model.

To boot the machine from the flash image, use an MTD drive :

$ qemu-system-arm -M romulus-bmc -nic user \
      -drive file=obmc-phosphor-image-romulus.static.mtd,format=raw,if=mtd -nographic

To use other flash models, for instance a different FMC chip and a bigger (64M) SPI for the ast2500-evb machine, run :

-M ast2500-evb,fmc-model=mx25l25635e,spi-model=mx66u51235f

When more flexibility is needed to define the flash devices, to use different flash models or define all flash devices (up to 8), the -nodefaults QEMU option can be used to avoid creating the default flash devices.

Flash devices should then be created from the command line and attached to a block device :

$ qemu-system-arm -M ast2600-evb \
      -blockdev node-name=fmc0,driver=file,filename=/path/to/fmc0.img \
      -device mx66u51235f,bus=ssi.0,cs=0x0,drive=fmc0 \
      -blockdev node-name=fmc1,driver=file,filename=/path/to/fmc1.img \
      -device mx66u51235f,bus=ssi.0,cs=0x1,drive=fmc1 \
      -blockdev node-name=spi1,driver=file,filename=/path/to/spi1.img \
      -device mx66u51235f,cs=0x0,bus=ssi.1,drive=spi1 \
      -nographic -nodefaults

In that case, the machine boots fetching instructions from the FMC0 device. It is slower to start but closer to what HW does. Using the machine option execute-in-place has a similar effect.

Booting from an eMMC image

The machine options specific to Aspeed machines to boot from an eMMC image are :

  • boot-emmc to set or unset boot from eMMC (AST2600).

Only the ast2600-evb and rainier-emmc machines have support to boot from an eMMC device. In this case, the machine assumes that the eMMC image includes special boot partitions. Such an image can be built this way :

$ dd if=/dev/zero of=mmc-bootarea.img count=2 bs=1M
$ dd if=u-boot-spl.bin of=mmc-bootarea.img conv=notrunc
$ dd if=u-boot.bin of=mmc-bootarea.img conv=notrunc count=64 bs=1K
$ cat mmc-bootarea.img obmc-phosphor-image.wic > mmc.img
$ truncate --size 16GB mmc.img

Boot the machine rainier-emmc with :

$ qemu-system-arm -M rainier-bmc \
      -drive file=mmc.img,format=raw,if=sd,index=2 \
      -nographic

The boot-emmc option can be set or unset, to change the default boot mode of machine: SPI or eMMC. This can be useful to boot the ast2600-evb machine from an eMMC device (default being SPI) or to boot the rainier-bmc machine from a flash device (default being eMMC).

As an example, here is how to to boot the rainier-bmc machine from the flash device with boot-emmc=false and let the machine use an eMMC image :

$ qemu-system-arm -M rainier-bmc,boot-emmc=false \
     -drive file=flash.img,format=raw,if=mtd \
     -drive file=mmc.img,format=raw,if=sd,index=2 \
     -nographic

It should be noted that in this case the eMMC device must not have boot partitions, otherwise the contents will not be accessible to the machine. This limitation is due to the use of the -drive interface.

Ideally, one should be able to define the eMMC device and the associated backend directly on the command line, such as :

-blockdev node-name=emmc0,driver=file,filename=mmc.img \
-device emmc,bus=sdhci-bus.2,drive=emmc0,boot-partition-size=1048576,boot-config=8

This is not yet supported (as of QEMU-10.0). Work is needed to refactor the sdhci bus model.

Other booting options

Other machine options specific to Aspeed machines are :

  • bmc-console to change the default console device. Most of the machines use the UART5 device for a boot console, which is mapped on /dev/ttyS4 under Linux, but it is not always the case.

To change the boot console and use device UART3 (/dev/ttyS2 under Linux), use :

-M ast2500-evb,bmc-console=uart3

Booting the ast2700-evb machine

Boot the AST2700 machine from the flash image, use an MTD drive :

IMGDIR=ast2700-default
UBOOT_SIZE=$(stat --format=%s -L ${IMGDIR}/u-boot-nodtb.bin)

$ qemu-system-aarch64 -M ast2700-evb \
     -device loader,force-raw=on,addr=0x400000000,file=${IMGDIR}/u-boot-nodtb.bin \
     -device loader,force-raw=on,addr=$((0x400000000 + ${UBOOT_SIZE})),file=${IMGDIR}/u-boot.dtb \
     -device loader,force-raw=on,addr=0x430000000,file=${IMGDIR}/bl31.bin \
     -device loader,force-raw=on,addr=0x430080000,file=${IMGDIR}/optee/tee-raw.bin \
     -device loader,cpu-num=0,addr=0x430000000 \
     -device loader,cpu-num=1,addr=0x430000000 \
     -device loader,cpu-num=2,addr=0x430000000 \
     -device loader,cpu-num=3,addr=0x430000000 \
     -smp 4 \
     -drive file=${IMGDIR}/image-bmc,format=raw,if=mtd \
     -nographic

Aspeed minibmc family boards (ast1030-evb)

The QEMU Aspeed machines model mini BMCs of various Aspeed evaluation boards. They are based on different releases of the Aspeed SoC : the AST1030 integrating an ARM Cortex M4F CPU (200MHz).

The SoC comes with SRAM, SPI, I2C, etc.

AST1030 SoC based machines :

  • ast1030-evb Aspeed AST1030 Evaluation board (Cortex-M4F)

Supported devices

  • SMP (for the AST1030 Cortex-M4F)

  • Interrupt Controller (VIC)

  • Timer Controller

  • I2C Controller

  • System Control Unit (SCU)

  • SRAM mapping

  • Static Memory Controller (SMC or FMC) - Only SPI Flash support

  • SPI Memory Controller

  • USB 2.0 Controller

  • Watchdog Controller

  • GPIO Controller (Master only)

  • UART

  • LPC Peripheral Controller (a subset of subdevices are supported)

  • Hash/Crypto Engine (HACE) - Hash support only. TODO: HMAC and RSA

  • ADC

  • Secure Boot Controller

  • PECI Controller (minimal)

Missing devices

  • PWM and Fan Controller

  • Slave GPIO Controller

  • Mailbox Controller

  • Virtual UART

  • eSPI Controller

  • I3C Controller

Boot options

The Aspeed machines can be started using the -kernel to load a Zephyr OS or from a firmware. Images can be downloaded from the ASPEED GitHub release repository :

To boot a kernel directly from a Zephyr build tree:

$ qemu-system-arm -M ast1030-evb -nographic \
      -kernel zephyr.elf